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Abstract— The development of machinery health 
monitoring technologies has taken center stage within 
the DoD community in recent years. Existing health 
monitoring systems, such as the Integrated Condition 
Assessment System (ICAS) for NAVSEA, enable the 
diagnosis of mission critical problems using fault 
detection and diagnostic technologies. These 
technologies, however, have not specifically focused 
on the automated prediction of future condition 
(prognostics) of a machine based on the current 
diagnostic state of the machinery and its available 
operating and failure history data. Current efforts are 
focused on developing a generic architecture for the 
development of prognostic systems that will enable 
“plug and play” capabilities within existing systems.  
The designs utilize Open System Architecture (OSA) 
guidelines, such as OSA-CBM (Condition Based 
Maintenance), to provide these capabilities and 
enhance reusability of the software modules. One such 
implementation, which determines the optimal water 
wash interval to mitigate gas turbine compressor 
performance degradation due to salt deposit ingestion, 
is the focus of this paper. The module utilizes 
advanced probabilistic modeling and analysis 
technologies to forecast the future performance 
characteristics of the compressor and yield the optimal 
Time To Wash (TTW) from a cost/benefit standpoint. 
This paper describes the developed approach and 
architecture for developing prognostics using the gas 
turbine module. 
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1. INTRODUCTION 

Various prognostics and health monitoring 
technologies have been developed that aid in the 
detection and classification of developing system 
faults.  However, these technologies have traditionally 
focused on fault detection and isolation within an 
individual subsystem.  Health management system 
developers are just beginning to address the concepts 
of prognostics and the integration of anomaly, 
diagnostic and prognostic technologies across 
subsystems and systems. Hence, the ability to detect 
and isolate impending faults or to predict the future 
condition of a component or subsystem based on its 
current diagnostic state and available operating data is 
currently a high priority research topic.   
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Figure 1 – Hierarchy of Prognostic Approaches 

In general, health management technologies will 
observe features associated with anomalous system 
behavior and relate these features to useful information 
about the system’s condition.  In the case of 
prognostics, this information relates to the condition at 
some future time. Inherently probabilistic or uncertain 
in nature, prognostics can be applied to 
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system/component failure modes governed by material 
condition or by functional loss. Like diagnostic 
algorithms, prognostic algorithms can be generic in 
design but specific in terms of application. Various 
approaches to prognostics have been developed that 
range in fidelity from simple historical failure rate 
models to high-fidelity physics-based models.  Figure 
1 illustrates a hierarchy of prognostic approaches in 
relation to their applicability and relative costs.  

This paper will discuss some architectures and specific 
prognostic implementations for gas turbine engines.  
The ability to predict the time to conditional or 
mechanical failure (on a real-time basis) is of 
enormous benefit and health management systems that 
can effectively implement the capabilities presented 
herein offer a great opportunity in terms of reducing the 
overall Life Cycle Costs (LCC) of operating systems as 
well as decreasing the operations/maintenance logistics 
footprint. 

2.  US NAVY ICAS 

The Navy’s Integrated Condition Assessment System 
(ICAS) [1] is a tool to enable maintenance 
troubleshooting and planning for shipboard machinery 
systems. It provides data acquisition, data display, 
equipment analysis, diagnostic recommendations, and 
decision support information to operators and 
maintenance personnel.  Additionally, ICAS links to 
other maintenance-related software programs to 
provide a fully integrated maintenance system.  ICAS 
assesses equipment and system condition for 
maintenance of machinery and equipment.  Through 
the use of permanently installed sensors, the ICAS 
system monitors vital machinery parameters on a 
continuous basis. ICAS can diagnose the operational 
condition of a particular piece of machinery using 
customer-supplied performance data linked to a logical 
diagnostic process. 

The ICAS workstation is used for data acquisition, 
conditioning, performance analysis, trend and logsheet 
capture, and expert evaluation. Several types of data 
acquisition devices that process sensor output signals 
augment it.  The ICAS workstation is also responsible 
for providing all user interface functions and long-term 
data storage.  Within this environment, the Prognostic 
Enhancements to Diagnostics Systems (PEDS) 
program is focused on demonstrating prognostic 
enhancements using demand data interface protocols 
and displaying using pseudo sensor inputs or simple 
web-based interfaces.   

3. US NAVY GAS TURBINE CBM INITIATIVE 

The Navy has formed an open forum working group 
teamed to establish Gas Turbine CBM, with the goal 
to plan and execute integration of CBM technologies 
into gas turbines on all CG & DDG class ships. 
Installation of FADC (Full Authority Digital engine 
Controller) controllers on all gas turbines in the CG & 
DDG classes by the Life Cycle Managers over the next 
8 years will provide the hardware and computing 
power required for equipment health assessment and 
monitoring. ICAS will provide the necessary 
connection allowing gas turbine health monitoring 
systems to provide assessments and recommendations 
to ships crew. New algorithms developed by the Navy, 
industry or the other programs will be incorporated as 
part of the FADC.  

The planning phase was necessary to establish a plan, 
organize a working group, establish funding 
requirements for the life of the program with OPNAV 
sponsors, and develop the complete transition plan. 
Basic CBM development phase is designed to use the 
output of currently installed sensors to change some 
time-directed maintenance items to condition-directed 
items. In the advanced phase, a limited number of new 
sensors will be used to develop more condition 
directed tasks and start turning some corrective 
maintenance items into condition directed tasks before 
the effected components fail. The last phase, system-
wide development will incorporate on-going and new 
R&D efforts into the development plan and complete 
system integration with ICAS. Most of the phases run 
concurrently and have parallel timelines. 

4. INCORPORATING PROGNOSTICS 

The approach for the PEDS program is to develop 
prognostic software that is modular and possess the 
capability for multiple transition opportunities.  The 
role of a PEDS module in an existing system is 
depicted using the diagram in Figure 2.  The figure 
illustrates the connections and communications 
between existing elements and the system 
enhancements. In the figure, proprietary interfaces or 
OSA-CBM middleware are used to “glue and hook” 
modules together. The figure shows the PEDS 
module’s ability to interface directly with the existing 
system, it’s HSI, and the decision support and logistics 
system using the proprietary interfaces defined by the 
existing system.  This is accomplished using system 
specifications, such as a Demand Data Interface (DDI) 
as in the case of ICAS.  In addition, the PEDS module 
has the ability to interface directly with any system 
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that uses OSA-CBM specifications (i.e. OSA-CBM 
Compliant Sensors and Processors, PEDS HSI) or 
systems that are enhanced to include the OSA-CBM 
specifications, which are represented by the dashed 
lines. 
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Figure 2 - PEDS and the Existing Diagnostic 

System 

Evolving Open Systems Standards 

Openness and open systems architecture is not a new 
concept in most parts of the engineering world. Being 
able to swap out a gear, bearing, shaft, chain, or even 
an engine is made possible through past efforts to 
standardize sizes and performance specifications. 
Equivalency is reduced to meeting performance 
(strength reliability, etc.) and known functional 
interfaces (physical, electrical, etc.). We tend to take 
this openness as a given, with little thought that it is 
usually the case for many situations. Electrical 
components (breakers, wire gauge, outlets, switches) 
followed a similar path and ultimately so is the 
electronics industry. While it is probably the case that 
these industries may have been slow to adopt these 
standards, at least with respect to today’s Moore’s Law 
expected timescales, in many ways it may be an 
engineering fait accompli. As the technology matures, 
there is a desire to box its function, quantitize its form 
factor, and structure its interaction with other system 
components. Philosophically, it could be argued that 
developing open standards minimizes the entropy gain 
in the engineering process.  

This may be the case in the matured situation, but for 
the developing open system structure, the 
implementations are usually more time-consuming and 
certainly not the path of least resistance. It means 
learning new techniques, structuring in different ways, 
and in many cases carrying additional baggage. It is 
initially a disruptive process. Consider a turn of the 
century bearing manufacturer having to buy new 
materials, retool his machines, and change his 
finishing process. Also consider the market for the 
bearing manufacturer who didn’t adapt to the 
engineering pressure to standardize. In addition, 
specifying performance is necessarily just as important 
as meeting a standard interface to accomplish true 
openness, modularity, and interchangeability. 

The adaptation for software and information systems 
may be an even more challenging engineering 
endeavor given the nature of the differences between 
bits and atoms: what we can feel and see versus what 
we cannot see and must interpret through use cases 
and extrapolation. For a particular system integration 
task, an open systems approach requires a set of public 
component interface standards and may also require a 
separate set of public specifications for the functional 
behavior of the components.  The development of the 
open-systems standards relevant to Condition-based 
Maintenance (CBM) and Prognostics and Health 
Management (PHM) development has been pursued 
by an International Standards Organization (ISO/TC 
108/SC 5) committee, a consortium of condition 
monitoring companies (MIMOSA), and a DoD Dual-
Use Science and Technology program (OSA-CBM) 
lead by Boeing. These projects were a start down the 
disruptive path of openness for health management 
systems.  

Because the specification deals with the I/O only, the 
actual layers or “modules” can be coded in a manner 
as to allow for proprietary approaches, thus protecting 
the intellectual property of the developer.  By applying 
the OSA-CBM specification, one can effectively 
communicate with a module being constructed by 
another developer without every knowing how the 
other module operates.  Additional information about 
OSA-CBM can be found at http://www.osacbm.org 
and an OSA-CBM training manual can be found at 
http://www.osacbm.org/Documents/Training/Train
ingMaterial/TrainingWebsite/index.html. 
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5. PROGNOSTICS CONSIDERATIONS 

For a health management or CBM system to possess 
prognostics implies the ability to predict a future 
condition. Inherently probabilistic or uncertain in 
nature, prognostics can be applied to system/ 
component failure modes governed by material 
condition or by functional loss.  Similar to diagnostic 
algorithms, prognostic algorithms can be generic in 
design but specific in terms of application. A 
prognostic model must have ability to predict or 
forecast the future condition of a component and/or 
system of components given the past and current 
information. Within the health management system 
architecture, the Prognostic Module function is to 
intelligently utilize diagnostic results, experienced-
based information and statistically estimated future 
conditions to determine the remaining useful life or 
failure probability of a component or subsystem.  
Prognostic reasoners can range from reliability-based 
to empirical feature-based to completely model-based. 

Some of the information that may be required 
depending on the type of prognostics approach used in 
the system include: 

• Engineering Model and Data 
• Failure History 
• Past Operating Conditions 
• Current Conditions 
• Identified Fault Patterns 
• Transitional Failure Trajectories 
• Maintenance History 
• System Degradation Modes 
• Mechanical Failure Modes 

Examples of prognostics approaches that have been 
successfully applied for different types of problems 
include: 

1. Experience-Based Prognostics: Use 
statistical reliability to predict probability of 
failure at any point in time. May be augmented 
by operational usage information. 

2. Evolutionary/Statistical Trending 
Prognostics: Multi-variable analysis of 
system response and error patterns compared 
to known fault patterns. 

3. Artificial Intelligence Based Prognostics: 
Mechanical failure prediction using reasoners 
trained with failure data. 

4. State Estimator Prognostics: System 
degradation or diagnostic feature tracking 
using Kalman filters and other predictor-

corrector schemes. 
5. Model-Based or Physics of Failure Based 

Prognostics: Fully developed functional and 
physics-of-failure models to predict 
degradation rates given loads and conditions. 

   
6. GAS TURBINE PERFORMANCE PROGNOSTICS   

Benefit of Technology 

Fouling degradation of gas turbine engine compressors 
causes significant efficiency loss, which incurs 
operational costs through increased fuel usage or 
reduced power output. Scheduling maintenance 
actions based upon predicted condition minimizes 
unnecessary washes and saves maintenance dollars. 
The effect of the various maintenance tasks (washing 
and overhaul) on gas turbine engine efficiency is 
shown in the figure below. 
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Figure 3. Effects of Washing on Efficiency and 
Overhaul 

Currently, washes are performed on a preventative 
schedule of 50 hours for on-line washes and 500 hours 
for crank washes. This maintenance task is performed 
with no engineering assessment of conditional need or 
optimal time to perform. In addition to the loss of 
availability and maintenance time incurred, 
unnecessary washes generate an environmental impact 
with the used detergent. Clearly operating with a 
module that assesses condition and predicts the time to 
wash more appropriately would benefit the Navy. 

Data and Symptoms for Development 

The compressor wash prognostic model was developed 
using data from fouling tests taken at NSWCC in 
Philadelphia, PA and is an example of evolutionary 
prognostics approach.  It is based upon specific system 
features and a simple model for compressor efficiency. 
In order to simulate the amount of salt the typical 
Navy gas turbine is exposed to on a normal 
deployment, a 9% salt solution was injected into the 
engine intake. Over the course of the entire test (3 
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days) approximately 0.0057m3 of salt was used to 
induce compressor degradation at four different load 
levels (1/3, 2/3, standard and full load levels or 
“bells”).  This method of testing was performed on 
both Allison 501 and LM2500 Units.  Figure 4 shows 
a borescope image of the salt deposits on the LM2500 
1st stage blading.  

 

Figure 4 - Borescopic Image of Salt deposits: 1st 
stage  

Compressor Performance Prognostics Module  

The compressor performance prognostic module 
consists of data preprocessing and specific prognostic 
algorithms for assessing current and future compressor 
conditions. The data preprocessor algorithms examine 
the unit’s operating data and automatically calculate 
key corrected performance parameters such as pressure 
ratios and efficiencies at specific load levels in the 
fashion already described.  As fouling starts to occur 
in service, probabilistic classifiers match up 
corresponding parameter shifts to fouling severity 
levels attained from these tests with corresponding 
degrees of confidence. The techniques employed and 
processing in the module are shown in detail in Figure 
5. As can readily be seen, the consideration of 
uncertainty is carried through the entire process to 
produce a confidence in the prediction. 
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Figure 5 - Processing Flow for Compressor Performance Prognostics
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A probabilistic-based technique was developed that 
utilizes the known information on how measured 
parameters degrade over time to assess the current 
severity of parameter distribution shifts and project 
their future state. The parameter space is populated by 
two main components.  These are the current condition 
and the expected degradation path.  Both are multi-
variate Probability Density Function (PDFs) or 3-D 
statistical distributions.  Figure 6 shows a top view of 
these distributions.  The highest degree of overlap 
between the expected degradation path and the current 
condition is the best estimate of compressor fouling. 
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Figure 6 - Prognostic Model Visualization 

To manipulate the data into the form of this model, the 
time dependency of the test results had to be removed 
because of the unrealistic fouling rates. The percent 
changes in static pressure ratio, fuel flow, and CDT 
were recast in terms of ¼ % pseudo-efficiency drops. 
This increment was chosen because it was the highest 
resolution that still permitted statistical analysis. With 
the assimilation of the data into these discrete bands, 
the statistical parameters (e.g., mean and standard 
deviation) can be ascertained for use in the prognostic 
model. Figure 6 shows the evolution of the compressor 
degradation for the LM-2500 test at 1% pseudo-
efficiency drops (for visual clarity).  The top two plots 
illustrate the distributions of pressure ratio and fuel 
flow respectively while the bottom two provides the 
joint probability distributions.  

The compressor inlet temperature (CIT), outlet 
temperature (CDT), inlet total pressure (CIPT) and 
discharge total pressure (CDPT) can typically be used 
to find compressor efficiency. (Boyce 1995)  However 
CDT, CDPT are not standard sensors in most Naval 
platforms.   
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In the event that total pressure measurements are not 
available, other methods can be used to approximate 
this efficiency calculation with other specific sets of 
sensors. 

Once the statistical performance degradation path is 
realized along with the capability to assess current 
degradation severity, we needed to implement the 
predictive capability. The actual unit-specific fouling 
rate is combined with historical fouling rates with a 
double exponential smoothing method. This time 
series technique weights the two most recent data 
points over past observations.  The following 
equations give the general formulation.  (Bowerman, 
1993).  
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Analysis of the degradation requires the simulation to 
predict the range of condition that might exist given 
the measurement and modeling uncertainties. This is 
accomplished using a Monte Carlo simulation with the 
mean and 2-sigma uncertainties. The resulting 
distribution is the range of Time-to-Wash predictions. 
Appropriate statistical confidence intervals can be 
applied to identify the mean predicted value. This 
estimate is updated with a weighted fusion from the 
predicted value and the historical degradation level 
derived from the fouling data.  The results of this 
process are shown in Figure 7. 
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Figure 7 - Prediction of Degradation Rates 



 7

PEDS Implementation 

The PEDS module implementation consists of 
translating the engineering code (in Matlab in this 
case) into an implemented “plug and play” module. 
The final compiling of the code is somewhat platform 
specific, but for Windows based applications the code 
can be written in C++ and compiled as a dll (dynamic 
linked library). The module currently supports OSA-
CBM compliant XML (eXtensible Markup Language) 
and other documented data structures.  

XML is an extension of Standard Generalized Markup 
Language (SGML) and has been a World Wide Web 
Consortium (W3C) recommendation since February 
1998. XML is focused on describing information 
content and information relationships. XML is similar 
to HTML (commonly used in most web-based 
applications) except that, unlike HTML, XML does 
not have a predefined structure. The structure of the 
XML document is defined by a user-generated 
Document Type Definition (DTD) or schema. The 
display format of an XML document is also specified 
by the user/generator of the document using 
eXtensible  

Stylesheet Language (XSL).  Therefore the same 
document can be displayed in multiple ways 
depending the consumer of the information. This 
separation of information content from its presentation 
is especially useful for user-centric interface designs. 

A major advantage of the PEDS architecture is it’s 
modularity and code re-usability. The figure below 
shows the two possible deployment opportunities for 
the Compressor Wash prognostic algorithm, ICAS and 
Tiger.  As shown, the Initialization element is the 
only part of the code that is different between the two 
implementations. Therefore the other elements of the 
module are re-usable between the two approaches.  
This is possible because the code has been written to 
allow for a number of different input possibilities.   
Flags are set in the initialization element that indicates 
which inputs to expect for the current implementation. 
Therefore, this modularity of design allowed easy 
modification of the compressor water-wash module to 
interface with different existing monitoring systems, 
resulting in faster development time, and lower 
incurred costs. 
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Figure 8. - Producing PEDS modules from Engineering Code 
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7. CONCLUSIONS 

This paper discussed many concepts associated with 
prognostic module development under the PEDS 
(Prognostic Enhancements to Diagnostic Systems) 
program. A brief review of prognostic approaches, 
some implementation issues including current OSA 
developments, and an example of gas turbine 
performance prognostics was provided. Data 
availability, dominant failure or degradation mode of 
interest, modeling and system knowledge, accuracies 
required and criticality of the application are some of 
the variables that determines the choice of prognostic 
approach. The OSA implementations are being 
developed most readily in XML and the gas turbine 
module is being implemented in different Navy 
monitoring applications. Ultimately the ability to 
predict the time to conditional or mechanical failure 
(on a real-time basis) will be of enormous benefit and 
health management systems that can effectively 
implement the capabilities presented herein offer a 
great opportunity in terms of reducing the overall Life 
Cycle Costs (LCC) of operating systems as well as 
decreasing the operations/maintenance logistics 
footprint.  
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